
Approved for public release; further dissemination unlimited

UCRL-ID-140135

K, the Fourth Order Coefficient Tensor

Used in ALE3D's Quadratic Generalized

von Mises Yield Function, in Five Easy

Steps

M.J. Busche

August 11, 2000

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy



DISCLAIMER
 
 This document was prepared as an account of work sponsored by an agency of the United States
Government.  Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California.  The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.
 
 This work was performed under the auspices of the U. S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.
 
 

 This report has been reproduced
 directly from the best available copy.

 
 Available to DOE and DOE contractors from the
 Office of Scientific and Technical Information

 P.O. Box 62, Oak Ridge, TN  37831
 Prices available from (423) 576-8401
 http://apollo.osti.gov/bridge/

 
 Available to the public from the

 National Technical Information Service
 U.S. Department of Commerce

 5285 Port Royal Rd.,
 Springfield, VA  22161
 http://www.ntis.gov/

 
 OR
 

 Lawrence Livermore National Laboratory
 Technical Information Department’s Digital Library

 http://www.llnl.gov/tid/Library.html
 
 

 



K, the Fourth Order Coefficient Tensor Used in ALE3D’s Quadratic
Generalized Von Mises Yield Function, in Five Easy Steps

Matt Busche
New Technologies Engineering Division
Lawrence Livermore National Laboratory

Livermore, CA 94550, USA

ABSTRACT

This document describes the software devloped for use in calculating K, the 4th

order parameter tensor used in ALE3D’s anisotropic plasticity model.  The multi-scale
modeling method developed for this calculation begins with orientation imaging
microscopy (OIM) data.  The program OIMA3D characterizes the sizes and crystal
orientation of the grains found in this data and then determines element orientations for a
representative 3D mesh.  A shell script, MAKEJOBS, then creates the necessary files to
run six ALE3D simulations using this mesh.  The results of these simulations are then
read by SVD_K, a Matlab script,  and K is calculated from this information.
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Step         page

1 Trim and clean OIM data as needed. 3

2 Run OIMA3D to assign crystal orientations to mesh. 4

3 Run MAKEJOBS  to prepare ALE3D jobs. 10

4 Submit jobs and wait.

5 Run SVD_K in Matlab to calculate K. 11
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Data Cleanup

Figure 1(a) shows a grain boundary map of a typical OIM scan as generated in
TexSEM Laboratories’ OIM Analysis for Windows.  The file contains many erroneous
data points that need to be removed.  The bottom of the file contains meaningless data
which was scanned beyond the edge of the specimen, and many erroneous points caused
by surface scratches are visible.  To improve the scan, first trim the bad data from the
edges.  In the case shown the bad data at the bottom as well as a small margin on the left
side was removed.  This is accomplished by right clicking on the map and selecting
“export scan data”.  A dialogue will request a filename, and then a crosshair will appear.

Use this to drag a box over the portion of the scan you wish to retain.  After obtaining the
newly trimmed data file, the next step is to clean up the erroneous points.  Open the
trimmed file and select “Data Cleanup” under the Tools menu.  A set of options that
works well is “Grain Dilation” with a grain tolerance angle of 15° and a minimum grain

size of 10.  Figure 1(b) shows the results of trimming and cleaning the data.

(a)
(b)

Figure 1.  Comparison of (a) as scanned and (b) cleaned OIM data.
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OIMA3D  –   mapping Orientation Imaging M icroscopy data to A le3D element meshes.

Overview

OIMA3D generates a set of element orientations based on OIM scan data for use
in ALE3D.  The OIM data can come from two possible sources, a grain data file or
directly from the scan data.  Based on the grain properties of the input, the program
generates grains in the element mesh which retain the orientations and relative size of
those found in the input and then arranges them using a simulated annealing algorithm.
An ordered list of the element orientations is output which is read by ALE3D’s crystal

orientation method 4.

Usage

With a grain data file generated by TexSem OIM Analysis (type 2) or by OIMA3D:

OIMA3D  –g  <grain data filename>  <output filename>

Directly from OIM scan data (.ang file):

OIMA3D  –a  <ang filename>  <output filename>

Input

The program was originally written to work directly from a grain data file
generated in TexSEM Laboratories’ OIM Analysis for Windows.  The format of the grain
data file is shown in Figure 2.  Note that only the Euler angles and radius are used by
OIMA3D.

phi1 PHI phi2 x y Image
quality

Confidence
index

area radius

. . . . . . . . .

. . . . . . . . .

Figure 2.  Format of grain data file.

However, it was found that the algorithm in TexSEM OIM Analysis used to
create the grain data files grossly distorted the texture of the data.  To remedy this, an
algorithm was implemented in OIMA3D which reads an OIM scan file and creates a
grain data file that retains the texture of the data.  This algorithm assigns every data point
in the file to a grain based on two criteria, orientation and proximity.

As a point is evaluated, its orientation is compared to each existing grain.  If phi1
and phi2 of the point are both within 0.15 radians of phi1 and phi2 of an existing grain,
and the point is adjacent to any existing point in that grain, then the new point is added to
the grain.  If a data point has a unique orientation or is not adjacent to any of the points in
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a similarly orientated grain, then a new grain is created.  Note that “adjacent” is
implemented as meaning within the distance of three points to allow for roughness in the
data.  The orientation of a grain is determined as a running average of the points added to
it.  This algorithm accounts for every point in the data file, and therefore retains the
texture of the data file very well.  As a final step, the grain data file is created.  The radius

field is the square root of the number of points in each grain.  This provides a length scale
representative of the area fraction of the grains.

The option for input of a grain data file is retained to allow the use of a grain data
file generated in a previous run of OIMA3D or a TexSEM grain data file if desired.

Operation

Operation begins with user input of five parameters:  mesh dimensions (number
of elements) in x, y, and z, the desired average number of elements per grain, and the
grain size exponent.  With these parameters acquired, OIMA3D begins by generating the

grain data structures.  This data structure contains the Euler angles of the grain, the global
position of the grain within the mesh, and an array of coordinates relative to the global
position that define the discrete points that make up the grain.

The grain data structures are created based on the data in the grain data file that
was either created earlier or specified on the command line.  The routine reads through
the file sequentially, looping back to the beginning if necessary.  Three things are added
to each grain data structure at this point:  the Euler angles, an initial position, and the
array of element coordinates.  The Euler angles are read from the grain data file, and the
initial position is a random point in the mesh.  To create the array of elements, its size
must first be determined.

The number of elements in a grain is proportional to the length scale found in the
radius field of the grain data file raised to the grain size exponent input earlier.  However,
the length scales must be normalized so that the desired average number of elements per
grain is achieved.  The number of elements in a grain is defined by

E
l

l
Eg

m

= 



 (1)

where E  is the average number of elements per grain and m is the grain size exponent,
both input earlier, and with the average length scale

l
n

lm= ∑1 2  (2)

Note that grains which scale to less than one element are not used in computing the
average length scale, which makes it necessary to solve (2) iteratively.  The number of
grains created in the mesh is controlled so that the sum of the elements in the grains is
roughly 30% larger than the number of elements in the mesh
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The grain size exponent is a user specified value because it’s not entirely clear
what the appropriate value is.  Using a value of two makes the volume fractions in the
mesh equal to the area fractions in the OIM data.  However, using a value of three seems
to be more physically appropriate.  Figure 3 compares contour ODFs for the actual OIM
data versus meshes using grain exponents of two and three.  The value of the grain size

exponent can be any real number greater than one.

(a)

(b)
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(c)
Figure 3.  Contour ODFs of (a) OIM scan data (b) element mesh with m = 3

                (c) element mesh with  m = 2.

The final step in creating the grain data structures is to assign the specified
number of element coordinates to each grain.  The first eight elements are assigned in the
progression shown in Figure 4(a).  The next twelve elements are in the set shown in
Figure 4(b), but are assigned in a random order.  Any additional elements beyond these
first twenty are assigned to a random contiguous point.  This method for initializing the
grains is not ideal.  It was desired that the grains show some randomness in their shape,
but the grains should be relatively equiaxed.  The major disadvantage of the method
implemented is that the grains “grow” in only three directions.

(a) (b)

Figure 4.  Progression of grain shape.

The random initial position of the grains leaves them poorly positioned in the
mesh.  There will be a great deal of overlapping and empty space.  The simulated
annealing algorithm repositions the grains so that the number of empty elements and
overlapped elements is minimized.  It operates by randomly perturbing the configuration
of the grains and retaining the perturbation only if the configuration is improved or with a
probability based on the “temperature”, which decreases at each time step.

A t b ti i f d d l l t d i d t k t f
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randomly.  The position of the grain can be changed by one element in any of six
directions.  A rotation is ±90° around the x, y, or z-axis, and is achieved by multiplying

each individual element coordinate by a rotation matrix.  Since the element coordinates
are relative to the global position of the element, the end effect is rotation of the entire
grain.

An individual perturbation is kept if the configuration of the grains is improved.
The change in the grain configuration is judged based on an evaluation function that
counts the number of overlapped grains and empty elements, with empty elements
weighted more heavily.  If the value of this evaluation function is decreased, the
perturbation is kept.  If the value is unchanged or increased, then the perturbation is kept

with probability

P e T= − −1 0 3.
(3)

where T, the temperature, decreases with time from 1 to 5 x 10-3.

After the grains are in their final configuration,  orientations are assigned to the
element mesh.  There will still be many overlapping elements at this point that are
unavoidable.  Any grains which are redundant (entirely overlapped by other grains) are
removed.  Any remaining overlapped elements get the orientation of the last grain to

claim them as the program reads through the grains sequentially.  There will also be a
small number of empty elements remaining in the final configuration.  These elements
are given the orientation of a randomly selected neighbor.  In the rare case that an empty
element is surrounded by other empty elements (this would only happen if grain size was
very large), then the element is given an orientation selected from a random position in
the mesh.

Important Note:  By default, a coordinate rotation (90° about y-axis and -90°
about x-axis) is applied to all the element orientations.  To remove this rotation, comment
out line 270.

Output

Three files are written if the program is executed with an OIM scan as input.  The
first is the grain data file (extension .gex) discussed above.  It is of the format in Figure 1,
but only the Euler angles and radius are given non-zero values.  The second file is a text
file (extension .g) containing pictograms of the grain microstructure produced in the

element mesh (see Figure 5).  These pictograms are orthogonal slices of the
microstructure along both the y-axis and z-axis.  They are useful for quickly verifying
that the microstructure generated has the desired grain sizes and shapes.
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Z = 0
 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
| |_|_|_| |_|_|_ _|_|_| |_|_|_|_|  _|_ _|
| |_|_| |_ _|_|   |   |_ _|_|_|_ _|  _|_|
|   |_|    _|_|  _|   |_|_| |_| |_|_|   |
|_ _|_|_ _| |_|_| |_ _|_|_|_ _|_|_|_|   |
|_|_|_|_|_ _|_| |_ _|_|_|_|_|_| |_|_ _ _|
|   |    _|_|_ _|_| |_| | |   |_  |_  | |
|_ _|_ _|_|_ _|_|_ _|_|_|_|_   _|_ _|_|_|
|_|_ _|   |_|_|_|_|_ _    |_|_|_|_|_|_| |
|_|_|_|_  |_|_|_|_ _|_|_    |_|_|   |_|_|
| |_  |_|   |_|_|_|     |_ _|_|_|  _|_| |
|  _|_| |_ _ _|_|_|_   _|_|_|_|_|_|_  |_|
|_|_|_ _|_|_|_    |_|_|_|_|    _|_|_|_ _|
| |_ _|_|_|_|_|_ _|_ _|_|_|_ _|  _|_ _  |
|_|_|_|_|   |_ _|_ _|_|_|_|_ _| | | |_|_|
|_|    _     _|_  |_|_|  _| |   |_|_ _ _|
|_|_ _| |_ _|_|_|_| |_|_|_ _|_ _|_|_|_|_|
|_|_ _|_|_|_|_| |_|_|_ _|_| |_|_|   |_|_|
|_|_  |   |     |_| | |_    |  _|_ _| |_|
|_|_|_|_ _|_ _ _|_ _|_|_|_ _|_| |_|   |_|
|_|_|_|_ _|_|_|_|_|_ _|_|_|_|_ _|_|_ _|_|

Figure 5.  Example of grain pictogram of generated mesh.

The third file is the list of element orientations read by ALE3D.  Its format is
shown in Figure 6.  Within Ale3D, MS_CrystalOrientMethod 4 assigns rotations to each
element according to its coordinates, matching the location of the element within the

mesh to the corresponding location in the list of rotations in the OIMA3D output file.
Therefore, it is essential that the coordinates and geometry of the mesh match exactly
with the coordinates and geometry assumed by OIMA3D.  If the mesh is a cube, all sides
should be unit length.  Otherwise, the smallest dimension length should be one, with the
remaining lengths scaled accordingly.

# of Elem in X # of Elem in Y # of Elem in Z 0 (unused) 0 (unused)

X length Y length Z length 0 0
Phi1 PHI phi2 0 0

. . . 0 0

. . . 0 0

Figure 6.  Format of orientation output file (input for Ale3d).
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MAKEJOBS  –  a script to MAKE  six ALE3D JOBS

Overview

MAKEJOBS is a shell script which creates the six sets of input files, batch scripts,
and restart files needed for the six ALE3D simulations used to compute K.

Usage

MAKEJOBS  <problem name>  <orientation file>  <number of processors>

Input

Use of MAKEJOBS requires two input files:  ‘makejobs.in’ and
‘makejobs.batch’.  These files are the base versions of the input and batch files created by
the script.  They contain placeholders (&1, &2, …) where relevant information such as
paths or boundary conditions is inserted by the MAKEJOBS script.  Do not remove these
placeholders, but other modifications to the files can be made if different parameters are
desired.   A SAMI mesh file must also be present in the working directory with filename
‘<problem name>.sami’.  This file is used when the script calls GENC.  When the jobs
run, the orientation file must also be present in the working directory.

Operation

Figure 7 shows all the files needed to run MAKEJOBS and the directory structure
and files created by the script.

/working directory
makejobs /<prob>xx

makejobs.in <prob>xx.in

makejobs.batch <prob>xx_00<np>_00000
<prob>.sami /<prob>xy

<orientation file> <prob>xy.in

svd_k <prob>xy_00<np>_00000
<prob>xx.batch /<prob>xz

<prob>xy.batch <prob>xz.in

<prob>xz.batch <prob>xz_00<np>_00000
<prob>yy.batch /<prob>yy

<prob>yz.batch <prob>yy.in
<prob>zz.batch <prob>yy_00<np>_00000

/<prob>yz

<prob>yz.in
<prob>yz_00<np>_00000

/<prob>zz

<prob>zz.in
<prob>zz_00<np>_00000

Fi 7 Fil d d f (b ld) d fil d di i d b i MAKEJOBS i h
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SVD_K – using Singular Value Decomposition to calculate K

Overview

SVD_K is a Matlab script that collects time history data from six ALE3D
simulations and uses a singular value decomposition to compute K, the coefficient tensor
used in ALE3D’s anisotropic plasticity model.

Usage

Within Matlab SVD_K can be called directly, or invoking ‘var = svd_k’ will store
the calculated K to the Matlab environment variable ‘var’ for later use.

Input

The required input for SVD_K is six separate time history directories each
containing the seven files:

e-mean  sx-mean  sy-mean  tyz-mean  txz-mean  txy-mean  mises-mean

Three user inputs are also required by the script: paths to the six time history
directories, the deformation rate vector, and the plastic work value at which to perform
the calculation.  For the time history paths, there is an option to either type in the six
paths or if MAKEJOBS was used, the paths can be found automatically given the
problem name and number of domains (provided SVD_K is running in the working
directory from MAKEJOBS’ run).  There is also an option to use the default deformation

rate, rather than typing it in.

Operation

Operation begins with reading the required data from the time history files.  The
desired e value is converted to a time, and all necessary data is collected from the files.
Values are interpolated and derivatives are calculated as the slope of a linear regression to
four points surrounding the desired time value.

Next the elastic component of the deformation rate is removed according to the
formulation

« :σ = −( )L d d p
(4)

d d Lp = − −1 : «σ (5)
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d
e

Kp = 3

2
2

«
:

σ
σ (6)

The deformation rate was determined in equation 5, and σ  is a 36x21 matrix

formed by concatenating six 6x21 matrices formed from each set of time history data.
The six matrices take the form

  σ

σ σ σ σ σ σ
σ σ σ σ σ σ

σ σ σ σ σ σ
σ σ σ σ σ σ

σ σ σ σ σ σ
σ σ σ σ σ σ

[ ] =























11 22 33 23 13 12

11 22 33 23 13 12

11 22 33 23 13 12

11 22 33 23 13 12

11 22 33 23 13 12

11 22 33 23 13 12

2 2 2
2 2 2

2 2 2
2 2 2

2 2 2
2 2 2

(7)

Equation 6 is then solved for K by finding the pseudo-inverse of σ  through singular

value decomposition, resulting in the final solution:

K d

V S U d

p

p

{ } = [ ] { }
= [ ] [ ] [ ] { }

21x1 21X36

~-1

36X1

21x21 21x21

-1

21x36 36X1

  

                   T

σ
)

) (8)

where V and U are orthogonal and S is diagonal.

Output

Three files are written during execution of SVD_K:  ‘dp.mat’, ‘k.mat’, and
‘kinput.mat’.  The file ‘dp.mat’ contains the deformation rate vector with the elastic part
removed, ‘k.mat’ contains the matrix K, and ‘kinput.mat’ contains K in the form needed
for an ALE3D input file.  The input form of k is also printed to the Matlab display, so it
can be directly pasted into the ALE3D input file.


